LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2023

PST 2502 – TESTING STATISTICAL HYPOTHESES

Date: 02-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM

SECTION-A

- 1. Distinguish between simple and composite hypotheses.
- 2. State Generalized Neyman-Pearson Theorem.
- 3. Explain briefly an unbiased test and describe its applications
- 4. Define Multi parameter Exponential Family.
- 5. When do we say that a test ϕ has Neyman Structure?
- 6. What are nuisance parameters and how do you remove them?
- 7. What is maximal invariant function?
- 8. Briefly explain the principles of LRT.
- 9. Give an example of a group of distributions with location changes.
- 10. Define p-value and provide any one use of p-value.

SECTION-B

Answer any FIVE questions.

Answer ALL the questions.

- 11. Let $X_1, X_2, ..., X_n$ be iid B(1,p) random variables. Find the Most powerful test function of level α for testing H_0 : $p = p_0$ Vs H_1 : $p = p_1$ ($p_0 > p_1$).
- 12. Give an example for Non exponential family of distribution possessing MLR property and prove.
- 13. Why do we require bounded completeness to prove similar tests to have Neyman structure? Explain.
- 14. Consider the one parameter exponential family of distributions. Obtain the UMPT of level α for testing the one-sided testing hypothesis.
- 15. Let β denote the power of a most powerful test of level α for testing simple hypothesis H₀ against simple alternative H₁. Prove that (i) $\beta \ge \alpha$ and (ii) $\alpha < \beta$ unless $p_0 = p_1$.
- 16. Using a random sample from U(0, θ) derive UMPT for H: $\theta \ge \theta_0$ versus K: $\theta < \theta_0$.
- 17. Obtain the Likelihood Ratio Test for equality of means of 'k' normal populations with a common variance.
- 18. Derive the Locally Most Powerful test for testing $H_0: p = 1$ Vs $H_1: p < 1$ based on a random sample of size n from $f(x, \theta) = pf_1(x, \theta) + (1 p)f_2(x, \theta)$, where f_1 and f_2 are known pdf's.

SECTION-C

Answer any TWO questions.

- 19. State and prove the existence, necessary and sufficiency parts of Neyman-Pearson Fundamental Lemma.
- 20. (a)Derive a UMP test of level α for testing $H_0: \theta \le \theta_0$ Vs $H_1: \theta > \theta_0$ for the family of densities $\{f(x, \theta), \theta \in \Theta\}$ that possess MLR in T(x). Show that the power function of the above testing problem increases in θ

b.) Show that any UMP test is always UMPUT.

(16+4)

 $(2 \times 20 = 40)$

 $(5 \times 8 = 40)$

(10 x 2 = 20)

Max.: 100 Marks

21. Consider a one parameter exponential family with density $f(x) = c(\theta)e^{Q(\theta)T(x)}h(x)$. Assume $Q(\theta)$ is strictly increasing in θ . Show that for testing $H_0: \theta \le \theta_1$ or $\theta \ge \theta_2$ Vs $H_1: \theta_1 < \theta < \theta_2$, prove

that there always exist UMP test of level α and is of the form $\phi^*(x) = \begin{cases} 1 & if \quad c_1 < T(x) < c_2 \\ \gamma_i & if \quad T(x) = c_i, \quad i = 1,2 \\ 0 & otherwise \end{cases}$

where the constants are selected so that $\beta_{\phi^*}(\theta_1) = \beta_{\phi^*}(\theta_2) = \alpha$.

22. (a) Let X and Y be independent Binomial variables with parameters (m, p_1) and (n, p_2) respectively, where m and n are assumed to be known. Derive a conditional UMPUT of size α for testing $H_0: p_1 \le p_2$ Vs $H_1: p_1 > p_2$.

(b) Let $X_1, X_2,...$ Xn be iid $N(\mu, \sigma^2)$, Find the shortest length confidence interval for μ with level 1- α based on a minimal sufficient statistic. (10+10)

\$\$\$\$\$\$\$